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• Aldehydes and ketones contain a carbonyl group.

• An aldehyde contains at least one H atom bonded to the

carbonyl carbon, whereas the ketone has two alkyl or aryl

groups bonded to it.

• Two structural features determine the chemistry and

properties of aldehydes and ketones.

Aldehydes and Ketones
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• Aldehydes and ketones react with nucleophiles.

• As the number of R groups around the carbonyl carbon

increases, the reactivity of the carbonyl compound

decreases, resulting in the following order of reactivity:

Reactions of Aldehydes and Ketones
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• If the CHO is bonded to a chain of carbons, find the longest

chain containing the CHO group, and change the –e ending

of the parent alkane to the suffix –al.

• If the CHO group is bonded to a ring, name the ring and add

the suffix –carbaldehyde.

• Number the chain or ring to put the CHO group at C1, but

omit this number from the name.

• Apply all the other usual rules of nomenclature.

Figure 21.1

Nomenclature of Aldehydes
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• Like carboxylic acids, many simple aldehydes have common

names that are widely used.

• A common name for an aldehyde is formed by taking the

common parent name and adding the suffix –aldehyde.

• Greek letters are used to designate the location of substituents 

in common names.

Common Names of Aldehydes
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• In the IUPAC system, all ketones are identified by the suffix

“one”.

• Find the longest continuous chain containing the carbonyl

group, and change the –e ending of the parent alkane to the

suffix -one.

• Number the carbon chain to give the carbonyl carbon the

lowest number.

• Apply all of the usual rules of nomenclature.

• With cyclic ketones, numbering always begins at the

carbonyl carbon, but the “1” is usually omitted from the

name.

• The ring is then numbered clockwise or counterclockwise to

give the first substituent the lower number.

Nomenclature of Ketones
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• Most common names for ketones are formed by naming

both alkyl groups on the carbonyl carbon, arranging them

alphabetically, and adding the word “ketone”.

• Three widely used common names for some simple ketones

do not follow this convention:

Common Names of Ketones
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• Sometimes, acyl groups must be named as substituents.

• The three most common acyl groups are shown below:

Figure 21.2

Naming Ketones and Acyl Groups
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• Compounds containing both a C-C double bond and an

aldehyde are named as enals.

• Compounds that contain both a C-C double bond and a

ketone are named as enones.

• The chain is numbered to give the carbonyl the lower

number.

Naming Enals and Enones
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• Aldehydes and ketones have strong dipoles, but lack

hydrogen bonding, resulting in boiling points between

nonpolar molecules and alcohols of similar size.

• Water solubility mimics that of alcohols and ethers of similar

size.
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• Aldehydes and ketones exhibit a strong peak at ~1700 cm–1

due to the C=O.

• The sp2 hybridized C–H bond of an aldehyde shows one or

two peaks at ~2700 –2830 cm−1.

Figure 21.3
The IR spectrum of

propanal, CH3CH2CHO

Spectroscopic Properties—IR Spectra

12

• Most aldehydes have a carbonyl peak around 1730 cm−1,

whereas for ketones, it is typically around 1715 cm−1.

• Ring size affects the carbonyl absorption in a predictable

manner.

IR—Carbonyl Absorption
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• Conjugation leads to a somewhat weaker C=O bond, thus

shifting the carbonyl absorption to longer wavelengths.

Figure 21.4
The effect of conjugation on

the carbonyl absorption

in an IR spectrum

IR—Conjugation Effects
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• The sp2 hybridized C–H proton of an aldehyde is highly

deshielded and absorbs far downfield at 9–10 ppm.

• Splitting occurs with protons on the  carbon, but the

coupling constant is often very small (J = 1–3 Hz).

• Protons on the  carbon to the carbonyl group absorb at

2–2.5 ppm.

• Methyl ketones, for example, give a characteristic singlet at

~2.1 ppm.

• In a 13C NMR spectrum, the carbonyl carbon is highly

deshielded, appearing in the 190–215 ppm region.

1H and 13C NMR absorptions
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Figure 21.5

1H NMR of Propanal

• There are three signals due to the three different kinds of

hydrogens, labeled Ha, Hb, and Hc.

• The deshielded CHO proton occurs downfield at 9.8 ppm.

• The Hc signal is split into a triplet by the adjacent CH2 group,

but the coupling constant is small.

16

13C NMR absorptions

• There are three signals due to the three different kinds of

carbons, labeled Ca, Cb, and Cc.

• The deshielded carbonyl carbon absorbs downfield at

203 ppm.
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• Billions of pounds of formaldehyde are produced annually by

the oxidation of methanol.

• It is sold as a 37% aqueous solution called formalin which is

used as a disinfectant, antiseptic, and preservative for

biological specimens.

• It is a product of incomplete combustion of coal, and is partly

responsible for the irritation caused by smoggy air.

Interesting Aldehydes and Ketones—

Formaldehyde
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• Acetone is an industrial solvent.

• It is also produced in vivo during breakdown of fatty acids.

• Diabetics often have unusually high levels of acetone in their

blood streams.

• Thus, its characteristic odor can be detected on the breath of

diabetic patients when the disease is poorly controlled.

Interesting Aldehydes and Ketones—Acetone
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Figure 21.6

Natural Aldehydes and Ketones with Strong Odors
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• Many steroid hormones contain a carbonyl along with other

functional groups.

• Cortisone and prednisone are two anti-inflammatory steroids

with closely related structures.

• Cortisone is secreted by the body’s adrenal gland, whereas

prednisone is the synthetic analogue and is used as an anti-

inflammatory for asthma and arthritis.

Steroids with Carbonyls 
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Preparation of Aldehydes

22

Preparation of Ketones
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• Aldehydes and ketones are also both obtained as products of

the oxidative cleavage of alkenes.

Oxidative Cleavage of Alkenes
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[1] Reaction at the carbonyl carbon—the elements of

H and Nu are added to the carbonyl group.

[2] Reaction at the  carbon.

General Reactions of Aldehydes and Ketones
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• In this process, nucleophilic attack precedes protonation.

• This mechanism occurs with negatively charged or strong

neutral nucleophiles.

Nucleophilic Addition
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• In this mechanism, protonation precedes nucleophilic attack

as shown above.

• With some neutral nucleophiles, nucleophilic addition only

occurs if an acid is present to activate the carbonyl by

protonation.

Acid-Catalyzed Nucleophilic Addition
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• The effect of protonation is to convert a neutral carbonyl

group to one having a net positive charge.

• This protonated carbonyl is much more electrophilic and

susceptible to attack by a nucleophile.

Acid-Catalyzed Nucleophilic Addition
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• Nucleophilic trends in carbonyl attack are not the same as in

straightforward substitution reactions at sp3 carbon atoms.

• Cl¯, Br¯, and I¯ are good nucleophiles in substitution

reactions at sp3 hybridized carbons, but they are ineffective

nucleophiles in addition.

• When these nucleophiles add to the sp2 carbonyl carbon,

they cleave the C–O  bond, forming an alkoxide.

• Since X¯ is a much weaker base than the alkoxide formed,

equilibrium favors the starting materials, not the addition

product.

Good Nucleophiles
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Effective Nucleophiles in Nucleophilic Addition

• Other nucleophiles add to carbonyl groups to form unstable

intermediates which rapidly undergo elimination.

• This addition–elimination process, particularly with amine-

related nitrogen nucleophiles, replaces a C=O with a C=N.

• For example, amines (RNH2) add to carbonyl groups in the

presence of mild acid to form unstable carbinolamines,

which readily lose water to form imines.

• In cases in which the initial addition adduct is unstable, it is

enclosed within brackets, followed by the final product.

30

Figure 21.7

Nucleophilic Addition Reactions
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• Treatment of an aldehyde or ketone with either NaBH4 or

LiAlH4 followed by protonation forms a 1° or 2° alcohol.

• Hydride reduction occurs via a two-step mechanism.

Nucleophilic Addition of Hydride

32

• Treatment of an aldehyde or ketone with either an

organolithium (R″Li) or Grignard reagent (R″MgX) followed

by water forms a 1°, 2°, or 3° alcohol containing a new C–C

bond.

• Nucleophilic addition of the carbanion-like species occurs via

a two-step mechanism.

Nucleophilic Addition of R¯
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• Treatment of an aldehyde or ketone with NaCN and a strong

acid such as HCl adds the elements of HCN across the C–O 

bond, forming a cyanohydrin.

• This is also a C-C bond forming reaction.

Nucleophilic Addition of ¯CN

34

• The mechanism involves the usual two steps of nucleophilic

addition—nucleophilic attack followed by protonation.

• This reaction does not occur with HCN alone, it requires ¯CN,

which is a strong nucleophile.

Nucleophilic Addition of ¯CN
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• Cyanohydrins can be reconverted to carbonyl compounds by

treatment with base.

• This process is just the reverse of the addition of HCN:

deprotonation followed by elimination of ¯CN.

• The cyano group of a cyanohydrin is readily hydrolyzed to a

carboxy group by heating with aqueous acid or base.

Hydrolysis of Cyanohydrins
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• Linamarin and amygdalin are two naturally occurring 

cyanohydrin derivatives.

• Both compounds are toxic because they are metabolized to

cyanohydrins, which are hydrolyzed to carbonyl compounds

and HCN gas.

Cyanohydrins in Nature
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• The Wittig reaction uses a carbon nucleophile (the Wittig

reagent) to form alkenes—the carbonyl group is converted to

a C=C.

Wittig Reaction

38

• The Wittig reagent is an organophosphorus reagent.

• A typical Wittig reagent has a phosphorus atom bonded to

three phenyl groups, plus another alkyl group that bears a

negative charge.

• A Wittig reagent is an ylide, a species that contains two

oppositely charged atoms bonded to each other, with both

atoms having octets.

• Phosphorus ylides are also called phosphoranes.

Wittig Reagents
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• Since phosphorus is a second-row element, it can be

surrounded by more than eight electrons.

• Thus, a second resonance structure can be drawn that places

a double bond between carbon and phosphorus.

• Regardless of which resonance structure is drawn, a Wittig

reagent has no net charge.

• However, in one resonance structure, the carbon bears a net

negative charge, making it nucleophilic.

Wittig Reagents

40

• Wittig reagents are synthesized by a two-step procedure.

Synthesis of Wittig Reagents
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• To synthesize the Wittig reagent Ph3P=CH2, use the following

two steps:

Step [1] Form the phosphonium salt by SN2 reaction of Ph3P: 

and CH3Br.

Step [2] Form the ylide by removal of a proton using BuLi as a 

strong base.

Nucleophilic Addition of R¯

42
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• One limitation of the Wittig reaction is that a mixture of

stereoisomers sometimes forms.

• The Wittig reaction has been used to synthesize many natural

products.

Figure 21.8
A Wittig reaction used to

synthesize β-carotene

Use of the Wittig Reaction

44
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Retrosynthetic Analysis of Wittig Reactions

46

• An advantage of the Wittig reaction over elimination methods 

used to synthesize alkenes is that the Wittig reaction always 

gives a single constitutional isomer.

• Consider the two methods that can be used to convert 

cyclohexanone into cycloalkene B.

The Wittig Reaction Leads to Precise 

Placement of the Double Bond
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• Addition of a Grignard reagent followed by dehydration gives

a mixture of products with the desired compound being the

minor product.

Comparison of Alkene Formation Methods

• Using the Wittig reaction to achieve the same synthesis gives

only the desired compound.

48

• Amines are classified as 1°, 2°, or 3° by the number of alkyl

groups bonded to the nitrogen atom.

• Treatment of an aldehyde or a ketone with a 1° amine affords

an imine (also called a Schiff base).

Formation of Imines
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• Because the N atom of an imine is surrounded by three

groups (two atoms and a lone pair), it is sp2 hybridized,

making the C–N–R bond angle 120°, (not 180°).

• Imine formation is fastest when the reaction medium is

weakly acidic (pH 4–5).

Imine Properties

50
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• In imine formation, mild acid is needed for protonation of the

hydroxy group in step 3 to form a good leaving group.

• Under strongly acidic conditions, the reaction rate decreases

because the amine nucleophile is protonated.

• With no free electron pair, it is no longer a nucleophile, and

so nucleophilic addition cannot occur.

Role of Acidity in Imine Formation
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• Many imines play vital roles in biological systems.

• A key molecule in the chemistry of vision is the highly

conjugated imine rhodopsin, which is synthesized by the rod

cells of the eye from 11-cis-retinal and a 1° amine in the

protein opsin.

Imines in Nature
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Figure 21.9

The Key Reaction in the Chemistry of Vision
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• A 2° amine reacts with an aldehyde or ketone to give an

enamine.

• Enamines have a nitrogen atom bonded to a C–C double

bond.

Formation of Enamines
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Figure 21.10

Formation of Imines vs. Enamines

• With a 1o amine, the intermediate iminium ion still has a

proton on the N atom that may be removed to form a C=N.

• With a 2o amine, the intermediate iminium ion has no proton

on the N atom.

• A proton must be removed from an adjacent C–H bond, and

this forms a C=C.
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• Because imines and enamines are formed by a reversible set

of reactions, both can be converted back to carbonyl

compounds by hydrolysis with mild acid.

• The mechanism of hydrolysis is the exact reverse of the

mechanism written for formation of imines and enamines.

Hydrolysis of Imines and Enamines

58

• Treatment of a carbonyl compound with H2O in the presence

of an acid or base catalyst adds the elements of H and OH

across the C–O  bond, forming a gem-diol or hydrate.

• Gem-diol product yields are good only when unhindered

aldehydes or aldehydes with nearby electron withdrawing

groups are used.

Hydration of Aldehydes and Ketones
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• Increasing the number of alkyl groups on the carbonyl

carbon decreases the amount of hydrate at equilibrium.

• This can be illustrated by comparing the amount of hydrate

formed from formaldehyde, acetaldehyde and acetone.

Hydration Level vs. Stability
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• Electron-donating groups near the carbonyl carbon stabilize

the carbonyl group, decreasing the amount of the hydrate at

equilibrium.

• Electron-withdrawing groups near the carbonyl carbon

destabilize the carbonyl group, increasing the amount of

hydrate at equilibrium.

• This explains why chloral forms a large amount of hydrate at

equilibrium.

• Three electron-withdrawing Cl atoms result in a partial

positive charge on the  carbon of the carbonyl, destabilizing

the carbonyl group, and therefore increasing the amount of

hydrate at equilibrium.

Electronic Factors Affecting Hydrate Stability
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• Both acid and base catalyze the addition of H2O to the

carbonyl group.

• With base, the nucleophile is ¯OH, and the mechanism

follows the usual two steps: nucleophilic attack followed by

protonation.

• The reaction rate increases under basic conditions because

of the higher concentration of ¯OH, a stronger nucleophile.

Base Catalyzed Hydration
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• The reaction rate increases in the presence of acid because

the acid protonates the carbonyl group, making it more

electrophilic and thus more susceptible to nucleophilic

attack.

Acid Catalyzed Hydration
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• Aldehydes and ketones react with two equivalents of alcohol

to form acetals.

• Acetal formation is catalyzed by acids, such as TsOH.

• Note that acetals are not ethers.

Addition of Alcohols—Acetal Formation 

64

• When a diol such as ethylene glycol is used in place of two

equivalents of ROH, a cyclic acetal is formed.

• Like gem-diol formation, the synthesis of acetals is reversible,

and often, the equilibrium favors the reactants.

• In acetal synthesis, since water is formed as a by-product, the

equilibrium can be driven to the right by removing H2O as it is

formed using distillation or other techniques.

• Driving an equilibrium to the right by removing one of the

products is an application of Le Châtelier’s principle.

Addition of Alcohols—Acetal Formation 
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Figure 21.11

Dean-Stark Trap for Removing Water
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• The mechanism for acetal formation can be divided into two

parts, the first of which is addition of one equivalent of

alcohol to form the hemiacetal.

Addition of Alcohols—Hemiacetal Formation 
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• The second part of the mechanism involves conversion of the

hemiacetal into the acetal.

Acetal Formation from a Hemiacetal 
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• Because conversion of an aldehyde or ketone to an acetal is a

reversible reaction, an acetal can be hydrolyzed to an

aldehyde or ketone by treatment with aqueous acid.

• Since the reaction is also an equilibrium process, it is driven

to the right by using a large excess of water for hydrolysis.

Hydrolysis of Acetals 
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• Acetals are valuable protecting groups for aldehydes and

ketones.

• Suppose we wish to selectively reduce the ester to an alcohol

in compound A, leaving the ketone untouched.

• Because ketones are more readily reduced, methyl-5-

hydroxyhexanoate is formed instead.

• To solve this problem, we can use a protecting group to block

the more reactive ketone carbonyl.

Acetals as Protecting Groups

70

• The overall process requires three steps.

[1] Protect the interfering functional group—the ketone 

carbonyl.

[2] Carry out the desired reaction.

[3] Remove the protecting group.

Protection–Deprotection Process
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• Cyclic hemiacetals containing five- and six-membered rings

are stable compounds that are readily isolated.

Cyclic Hemiacetals
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• Cyclic hemiacetals are formed by intramolecular cyclization 

of hydroxy aldehydes.

• Such intramolecular reactions to form five- and six-membered 

rings are faster than the corresponding intermolecular 

reactions. 

• The two reacting functional groups (OH and C=O), are held in

close proximity, increasing the probability of reaction.

Formation of Cyclic Hemiacetals
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• Hemiacetal formation is catalyzed by both acid and base.

Acid-Catalyzed Hemiacetal Formation
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• Intramolecular cyclization of a hydroxy aldehyde forms a 

hemiacetal with a new stereogenic center, so that an equal 

amount of two enantiomers results.

• Re-drawing the starting material and products in a 3-

dimensional representation results in the following:

Intramolecular Hemiacetal Formation
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• Cyclic hemiacetals can be converted to acetals by treatment

with an alcohol and acid.

• This converts the OH of the hemiacetal into the OR group of

an acetal.

Intramolecular Hemiacetal Formation

76
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• In the conversion of hemiacetals to acetals, the overall result

is the replacement of the hemiacetal OH group by an OCH3

group.

• This reaction occurs readily because the carbocation formed

in step 2 is stabilized by resonance, making the hemiacetal

OH group different from the hydroxy group in other alcohols.

• Thus, when a compound with both an alcohol OH and a

hemiacetal OH is treated with an alcohol and acid, only the

hemiacetal OH reacts to form the acetal.

Cyclic Hemiacetals
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• Carbohydrates, commonly referred to as sugars and starches,

are polyhydroxy aldehydes and ketones, or compounds that

can be hydrolyzed to them.

• Many carbohydrates contain cyclic acetals or hemiacetals.

• Examples include glucose and lactose.

Introduction to Carbohydrates
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• Hemiacetals in sugars are formed by cyclization of hydroxy

aldehydes.

• The hemiacetal in glucose is formed by cyclization of an acyclic

polyhydroxy aldehyde (A), as shown.

• When the OH group on C5 is the nucleophile, cyclization yields

a six-membered ring, and this ring size is preferred.

• Cyclization forms a new stereogenic center—the new OH group

of the hemiacetal can occupy the equatorial or axial position.

Introduction to Carbohydrates


